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TAYLOR INSTABILITY OF INCOMPRESSIBLE LIQUIDS

PART 1. TAILOR INSTABILITT' OF AN INCOMPRESSIBLE LIQUID

by Enrico Fermi

This is an attempt to discuss in a very simplified form the problem
y

of the growth of an Initial ripple on the surface of an incompressible 

liquid in presence of an acceleration, g, directed from the outside into 

the liquid.

The model is that of a heavy liquid occupying at t = 0 the half space 

above the plane z = 0. It is well known that this is a state of unstable 

equilibrium. Any tiny ripple on the surface at the initial time grows in 

amplitude, first exponentially and later, when its amplitude has become 

comparable to the wave length, by a more complicated law.

The case will be considered that there is initially a small amplitude 

sinusoidal ripple of wave length A.. In a first phase this amplitude will 

increase exponentially like

(1)
X

This exponential law, however, will break down when the amplitude has

become comparable to A = A /27r. We propose to discuss what happens in the

subsequent phase.

This will be done by grossly schematizing the shape of the wave as indi

cated in Fig. 1.

Instead of a wave profile like the curve, a profile like ABCDEFGHIJ 

will be assumed.

It is clear from the symmetry of the problem that the points at the 

maximum and the minimum of the wave move in vertical directions. In Fig. 2 

a half wave, from a maximum to the successive miniTmnn is represented with 

the notations adopted. 00’ is the initial level of the liquid. On account of 

the incompressibility the amount of liquid below the plane 00', namely CO'DE
-1-
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nust be equal to the amount of liquid ABCO missing from above. This con

dition leads immediately to the relationship

ax
1—x (2)

Our schematic wave profile is then characterized by the two parameters

a, x. The problem is to detemine how they vary with time.

In principle the problem so simplified could be solved by expressing

the kinetic energy T and the potential energy U of the liquid contained

between the two boundaries OA, 0'E as functions of a, x, a, x .

T = T(a, x, a, x)
U = U(a,x)

One can then write the lagrange equations

d_2T .siHdt ax " 3x “ “ax' dt Sa " da 3 aa (3)

which describe the law of variation of the two wave parameters a, x.

The potential energy U can be written down immediately. It is due to 

having moved the liquid originally contained in ABOC (weight per unit length 

perpendicular to the plane of the drawing = ^ b (l-x), height of the

center of gravity = b/2) to the lower position CDEO’ with the center of 

gravity at a height -a/2.

In what follows the following units will be used: Unit of length, 

unit of acceleration, gj unit of density, p .

One finds, then, the potential energy

u 3 -ife <*>

The calculation of the kinetic energy is more difficult. In principle
t

it could be carried out for a prescribed motion of the profile of the liquid 

by solving a Dirichlet problem. Instead of doing this, a much cruder method 

was followed in keeping with the crude approximation chosen for the profile

of the wave.



When the amplitude of the wave is very large it ie evident that the 

kinetic energy is due primarily to the vertical component of the liquid 

velocity inside the domain BDEB'. The corresponding kinetic energy can 

be computed easily on the assumption that the vertical component of the 

velocity is constant on each horizontal section of BDEB'. One finds that 

this part of the kinetic energy is given by

Ti - (5)
For small and moderate amplitudes of the wave, additional terms in 

the kinetic energy become important. One of them is the kinetic energy 

due to the horizontal component of the motion of the liquid BDEB'. Ifcis

term of the kinetic energy is given approximately by
•2axx (6)

Finally, the kinetic energy due to the motion of the liquid above 

the line AB' should be estimated. An approximate expression for this term 

of the kinetic energy yields
2.2

The kinetic energy is the sum

T = T^ + T

rr- axax . ir 2.2 

of the three terms (5^ (6} (?)

(7)

(8)

As pointed out, the leading term at high amplitude is the first. For 

low amplitude all the three terms need to be considered.

Using the expressions(U)and(8) for potential and kinetic energy, one 

can write the Lagrange equations(3) That enables one to express the 

second time derivatives x and a in terms of x, a, x, a. One finds

ED-FB •• AF-EC 
X 31 AD-BC' " AD-BC (9)

where
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where

and

My,

a + ^" y

^ + f a 
2y 2

(10)

„ a a2 1 (4x-l)i
E J ’ g“ * 5 2

2*2 •• *2 *• *2 #2a x_ . 22* . . J2« . I 222L . 1T“E_ . TOca (n)y ^ 3a 2 a 2y 11x4 '■LL;

*2 •• •*
a » + . sa * * .irsa

a ^ 3 r x
2.2

y = x(l-x) (12)

These equations have teen integrated numerically by Miriam Caldwell. 

Initial conditions corresponding to a wave of very low amplitude were 

chosen as follows: a = .01, a = .0177, x * .5, x = 0. The results of the 

numerical integration are given in Table I.

t a b X

0 .0100 .0100 .500
• 5 .0243 .0228 .484

1.0 .0628 .0468 .427
1.5 .192 .083 • 303
2.0 .584 .115 .165
2.5 1.218 .144 .106
3-0 2.195 .170 .072

Table I

The four columns of the table give, respectively: the time in units 

the two amplitudes of the wave, a and b, below and above the original surface 

of the liquid expressed in units \/2; and the quantity x that measures the 

asymmetry of the wave (x » ,5 corresponding to a symmetrical wave), x < .5 

corresponds to a wave in which the half wave below the original liquid sur

face is narrower than the half wave above. From an inspection of the table 

one will recognize that up to about t > 1, the two amplitudes, a and b, have 

rather close values and they grow approximately exponentially with a period
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\

not far froa the one computed from the correct hydrodynaalcal theory of 

wall amplitude vavea

~ ■ .56 (in our units) (13)

Already, at t > 1, an appreciable asymmetry of the wave has developed. This 

becooes more and more noticeable for later times. At t - 3, for example, b 
la leea than 1/lOth of a.

Rie asymptotic behavior of a, b, and x for large values of the time Is 

obtained from a discussion of the equations (9). One finds that a increases 

proportionally to the square of the time, b Increases proportionally to the 
square root of the time, and x Is inversely proportional to the 3/2 power of 

the time. More precisely, one finds the following limiting expressions
a-* £ (t- l.C*)2 (14)

b .12(t - 1.04)1//2 (15)
x-^ .2l(t - 1.04)"3/2 (16)

In other words, the lower tip of the wave falls with uniformly accelerated 
motion and with acceleration equal to 8/7 g. Hie upper half wave grows much 

more slowly and Its velocity decreases with time.

It is interesting to compare the results of this crude approximation with 
the experimental results obtained by D. J. Lewls^, as well as with the results

2 •jof 0. I. Taylor and of Taylor and Davis . The present theory seems to repre

sent correctly one feature of experimental results, namely the fact that the 

half wave of the heavy liquid into the vacuum becomes rapidly narrower, where

as the half wave pushing into the heavy liquid becomes more and more blunt.

On the other hand, the present theory falls to account for the experimental 

results according to which the front of the wave pushing Into the heavy liquid 

moves with constant velocity. According to the present theory the displace

ment Is expected instead to be proportional to the square root of the time.

1. PM &62A 81, 155b"
2. pbs 20IA 192, 1950
3. pbs 200A 375, 1950



PART 2. TAYLOE INSTABILITY AT THE BOUNDARY OF TWO INCOMPRESSIBLE LIQUIDS

By Enrico Fermi and John -von Neumann

In a previous memorandum, "Taylor Instability of an Incompressible Liquid," 

one of us has discussed the Taylor instability at the surface between an incom

pressible liquid and in a vacuum by using a very simplified model which consists 

in assuming that at all times the interface may be represented by a surface of a 

shape

Figure 1

-7-



The vertical lines OA and O'A' are traces of planes of symmetry and their dis

tance is half a wave length.

In the case previously discussed this model succeeded in representing cor

rectly at least some features of Taylor instability. In particular, it vas 

found that the heavy fluid penetrates into the vacuum with a spike which be

comes thinner as the phenomenon progresses. Actually the front of this spike 

moves with uniformly accelerated motion with an acceleration that evidently 

should be equal to the gravitational acceleration g and which, due to the 

crudeness of the model, turns out to be 8/7 g. The upward motion of the 

vacuum bubble into the fluid is represented less correctly. According to the 

results of Taylor, this bubble should move upward with a constant limiting 

velocity. The model fails to reproduce correctly this feature and the displace

ment of the top of the bubble is asymptotically proportional to J t.

As a contribution to the discussion of the Taylor instability between two 

fluids of different densities, P and tr ( p ><r), we have tried to explore a 

similar model for this more complicated case. The notations are slightly dif

ferent from those used in the previous memorandum and are clearly shown in 

Figure 1.

In order to write the Lagrangean equations for the system, it is necessary, 

to obtain an expression for the kinetic energy of the system as a function of 

the two parameters, x and y, that characterize its position and of their time 

derivatives, x and y. This has been done using essentially the same proce

dure followed in the previous memorandum. In the present case we were interested 

particularly in a description of the late phases of the phenomenon and for this 

reason only one of the three terms of the kinetic energy previously used was



maintained. This term represents the kinetic energy of the vertical motions 

in the two channels of length x + y through which the heavy fluid of density 
P moves downwards and the light fluid of density <r moves upwards. The ex

pression of this kinetic energy is given by two terms similar to expression (5) 

of the previous memorandum, rewritten with new notations. The expression of 

the kinetic energy is

T - ! (/> +cr y X2 + £ (er + p i) x y2 + £ (px +<ry) x y. (l)

The potential energy U is given by

U - - g^gx y. (2)

The Lagrangean equations corresponding to (l) and (2) can be written immediately. 

One of them is
2 2(2/°y + 2o-2-) x + (p x +<ry) y - <r Eg- x2 + (2p + 4 ^ ) y x - 2P-j y2-

- 3 g(P -cr) y - 0. (3)

The other Lagrangean equation is obtained by interchanging in (3) x and y and 

also P and <r in all terms except the last. Instead of using the two Lagrangean 
equations, we may, however, use equation (3) and the energy equation

T + U - 0. (1*)

The total energy is taken to be zero because we assume that the system starts 
with zero velocity and with a flat horizontal interface. By a suitable change 
of the scales of x, y, and t, it is possible to write the equations (3) and (4) 

in a form in which P, <r and g do not appear. This is done by the following

transformations
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£»/>x r = -/3g(^ - <r) t.

With these nev coordinates, the equations (4) and (3) become

(5)

(1 + -J-) 4- + (1 + 4) -T- + ^ + T} ^ ’ 1

4 -. k >)‘
Y' ^ t v-*- T + ^ T + 1 ^ g(2 + 2 -f) 5 + (1 + 4)1 - -44- + (4 1.

(6)

(7)

The dots represent in these equations derivatives vith respect to X. By making 

use of the similarity properties of these equations, they can be reduced to the 

first order. The appropriate transformations are the following

S * e2B+2<l

4p

2s-2q

1^. 
d sy/r ST

By substitution one obtains the following equation of the first order 

r - (3 + r2) (tgh 2q - | r).

and also the additional equations 

-s X _______e* u ♦ ?)
78(3 + r2) cosh 2q ^ 4(3 + r2) cosh 2q

(1 - r)
J2X3 + r2) cosh 2q

which can be used in passing from the solution of equation (9) to the solution

(8)

(9)

(10)

of Our physical problem.
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In selecting tbe solution of (9) corresponding to the actual case, one 

needs the following initial values of q and r. These are obtained as fol
lows. As long as tbe disturbance has very low amplitude, it is known that 

the wave is of sinusoidal shape and exponentially increasing amplitude. This 
phase of the phenomenon is not represented by our treatment which describes 

only the late phase of the motion. In fact, we may assume that the proper 
initial conditions for our problem correspond to tbe time when the exponential 

solution of the early phase breaks down. At this moment we have approximately 
x ■> y and dx/dt * dy/dt. Making use of equation (5) and equation (8), this 

situation corresponds to
9 - \r » 0. (11)

In Figure 2 the shspe of the solution of equation (9) corresponding to 

these initial conditions is outlined.
\

I

q

*
»

Figure 2
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Tbe initial point is P and tbe arrow indicates the direction of increasing tine. 

As tine Increases q becomes positive infinite and r converges to tbe value 

3/5. One can now find without trouble tbe following asymptotic expressions

' *

«•
4

t

1 8 „ P-<r +2 .2 7 8 t (
k.1/2

(12)

The first of these equations indicates that the heavy fluid moves into the light 

fluid with uniformly accelerated motion, as was found to be the case when <r * 0. 

The acceleration is 8/7 g (f-s")/p. Presumably the factor 8/7 in front of the 

expression should not be there in a more correct theory because the same factor 

vas obtained also when o' = 0, in which case one would expect a free fall vith 

acceleration g. We may, therefore, conclude tentatively that tbe heavy liquid

should penetrate the light liquid with an acceleration
£- <r. . (13)

Again we find that a bubble of the light liquid rises much more slowly into the 

heavy liquid. The fact that the height of this bubble is proportional to ~/~t 

and not to t is presumably due to tbe inaccuracy of the model.

Conclusions

The present discussion makes it appear likely that tbe features of the 

Taylor Instability at the interface between two liquids of different density 

are similar to those corresponding to the case of the boundary between a liquid 

and a vacuum. The main difference is that according to formula (13) tbe accele

ration describing tbe fall of the heavy into the light liquid is reduced by the 

factor (P-v)jp. There is, of course, another phenomenon that has been here
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entirely neglected and which, may in some cases play a -very important role. 

All along the line HB' in Figure 1 one might expect Helmholtz instahility to 

develop because the heavy liquid moves downwards on one side of the boundary 

and the light liquid moves upwards on the opposite side. This instability 

will presumably further contribute to the mixing and may, in particular, 

break up the spike of heavy liquid as soon as it becomes sufficiently thin.


